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MRI in the hospital 
needs a lot of protons for a radiosignalneeds a lot of protons for a radiosignal

120 nm120 nm

Cell nucleus Nuclear porep



MRI ‘op de tast’
feel the force due to a single proton?feel the force due to a single proton?



Magnetic Resonance Force Microscopy

Sensing the force between a magnetic tip 
d l i   th  tiland nuclear-spins on the cantilever

Degen, Poggio, Mamin, Rettner, Rugar,      IBM  Research
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Magnetic Resonance Force Microscopy

Sensing the force between a nuclear spin 
d  ti  tiand a magnetic tip

Degen, Poggio, Mamin, Rettner, Rugar  



3D Virus Imaging Experiment
MRFM t ith i i f Cantilever tip with tobacco mosaic virusMRFM setup with microwire rf source 
and sample-on-cantilever geometry

laser

cantilever

virus

microwire

FeCo tip
sample

Strong MRFM proton signal from virus

microwire 1H spectrum



Measuring Small forces is the key:

F = ma = -kx – γv

Fn = 

Th l f i i d t i d bThermal force noise is determined by 
damping and temperature only

Rugar cantilevers have γ = 4e-13  Ns/m



ERC starting grant:
Single proton spin resolution is achievable!Single proton spin resolution is achievable!

Large Field Gradient Ultralow temperatures

Carbon
Nanotubes 

Bonus: lower noise < 10 mK
Need new  detectionNeed new  detection
without interferometer



Single proton spin resolution is achievable!
Where are the three orders of  magnitude?Where are the three orders of  magnitude?

Large Field Gradient Ultralow temperatures

Carbon
Nanotubes SQUID

Bonus: lower noise < 10 mK ?
Need new  detectionNeed new  detection
without interferometer



New detection scheme based on SQUID:

MagnetMagnet

w

to SQUIDPick-up coil
Specimen

Tip

p

Superconducting Quantum Interference Device: 
M t iti  ti  d t tMost sensitive magnetic detector



Alternative cantilever: SiC Nanowire

40 micron long
40 nm diameter       γ = 1e-15 Ns/m
Very low damping even at room temperature

electrostatic actuation in SEM:



Nanowire with magnet:

Superconducting coil:



How do we make it?



Cantilever IICantilever II
A NdFeB (Neodymium-IJzer-Borium) spherical particle is attached to a 53.87 um long SiC 
nanowire, which is attached to a Si (previous AFM) chip.
Characteristics: 
Length = 53.35 um, Diameter = 100 nm
Resonance frequ. = 1.47 kHz (measured in SEM at RT) 
Spring constant k = 4.5 E -5 (calculated from length and diameter) 
Quality Factor Q = 1500 (measured in SEM at RT)
Damping coefficient R = 2.6 E-12 (calculated from Q)Damping coefficient R  2.6 E 12 (calculated from Q)
Amplitude at resonance = 3,5 um (measured)
Expected noise amplitude at peak is 1 nm/sqrt(Hz) at resonance at 4K



Resonance of Cantilever at RTResonance of Cantilever at RT
In the SEM a resonance is measured at 1472 Hz with Q of 2300 (by applying 1V DC and 10 mV ac)
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Nanowire with magnet in close proximity

Of  d  lOf  superconducting coil



Magnet is 60 micron above       
superconducting coil

Can be actuated by
a macroscopic 
magnet



Cantilever driven resonancesCantilever driven resonances
Driven by a piezo element, we find resonances at 1660 and 1900 Hz. x-signaly p ,
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Cantilever decay of resonant motionCantilever decay of resonant motion
Switching of our driving pieze we find decay rates corresponding with the Q of the resonance peaks.  g g p y p g p

Amp
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Cantilever thermal noise resonancesCantilever thermal noise resonances
Without driving resonances are measured around 1660 Hz and 1900 HzWithout driving resonances are measured around 1660 Hz and 1900 Hz.

 ASD mode applitude in vacuum 4.2 K Gain =100
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Cantilever thermal noise resonancesCantilever thermal noise resonances
Without driving resonances are measured around 1660 Hz and 1900 HzWithout driving resonances are measured around 1660 Hz and 1900 Hz.
detection noise floor 40 pm/sqrt(Hz)

 ASD mode applitude in vacuum 4.2 K Gain =100
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Cantilever thermal noise resonancesCantilever thermal noise resonances
Without driving resonances are measured around 1660 Hz and 1900 HzWithout driving resonances are measured around 1660 Hz and 1900 Hz.
detection noise floor 40 pm/sqrt(Hz)

 ASD mode applitude in vacuum 4.2 K Gain =100
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Prospects with these cantilevers:
POSITION NOISE:

At 4K, 5 micron magnetic particle, 
60 μm from coil » » » »  40 pm/√Hz60 μm from coil » » » »  40 pm/√Hz

Optimize SQUID noise ÷ 2Optimize SQUID noise ÷ 2
Magnet at 30 μm ÷ 8
More coil windings ÷ 2
SQUID at 250 mK ÷ 4

Back action ?

» » » »  400 fm/√Hz  ???» » » »  400 fm/√Hz  ???



Measure a single electron or nuclear spin ?

0.3 aN for proton
in 2*107 T/m gradientin 2 10 T/m gradient

2 aN for electron 
I 2*105 T/ di tIn 2*105 T/m gradient

Cantilever thermal motion
or

tip surface dissipationp p



Prospects with these cantilevers:
FORCE NOISE:

At 4K thermal noise is 10 aN/√Hz
Rugar has 9 aN/√Hz at 4K Rugar has 9 aN/√Hz at 4K 

(1 aN/√Hz at 100 mK)

At room temperature Q can be made higher 
- smaller cantilever diameter
- longer cantilever lengthg g



FUTURE PLANS

Cool down in dilution refrigerator in vacuumg
what saturation temperature?

back actionback action
environmental vibrations
poor heat conductivitypoor heat conductivity

Cool down in 4He
thermal contact down to 100 mK
viscosity measurement

Visit Helsinki in August



Cantilever thermal noise resonancesCantilever thermal noise resonances

 ASD mode applitude in vacuum 4.2 K Gain =100

SNR = 50 at 4K
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FORCE NOISE:

Q can be a lot higher depending on g p g
- cantilever diameter
- cantilever length- cantilever length
- surface treatment ??

SEM can be done more carefully  fire wireSEM can be done more carefully, fire wire

- clamping losses
- ultra low temperatures ?? - ultra low temperatures ?? 

transverse phonon energy  ~ 1.5 K for 50 nm diameter wire



FEEDBACK COOLING:

At 4K and 40 pm/√Hz
we could cool this cantilever to 150 mK

At 10 mK and 400 fm/√HzAt 10 mK and 400 fm/√Hz
we might cool this cantilever to 100 μK

Martino Poggio et al. PRL



Thermometer / VISCOSITY METER 
for 3He/ 4He:

Pickett /  et al. use a 1 micron diameter 
vibrating wire  ~ 5 mm long  in B-fieldvibrating wire,  5 mm long, in B-field

32 kHz tuning fork (k = 10 kN/m  Q=)32 kHz tuning fork (k = 10 kN/m, Q=)
has intrinsic damping γ = 4*10-8 Ns/m

SiC wire: (k < 0.1 mN/m, Q=106)( , )
γ = 4*10-13 Ns/m

hydrodynamic damping force scales hydrodynamic damping force scales 
with the radius of  a sphere



… Ultimate Goal:

Single electron spin 
Few nuclear spinsFew nuclear spins

St t  d t i ti  f  Structure determination of  
nuclear pore complexes
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